Chapter II:
Interactions of ions with matter
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Transferred energy: Classical oscillator (1)

Before to look for quantum processing - details about classical
processing: electron = classical harmonic oscillator with
pulsation w, - e bound to its site by a spring force with
modulus -mw_4r - motion equation -

d2? 9 e
Fwo T =——E(T,t
ez Y m ( )
with ﬁ(?,t) the electric field generated by the projectile
(perturbation)

No-linear equation - simplification -

E(7,t) = E(7P@1),t) = E(t)



Transferred energy: Classical oscillator (2)

By supposing the absence of electric field at t = -00 and
r(-oo) = 0 = a particular solution of the equation is -

Tmwo

P(t) = —— /t dt' E (') sinwo(t — t)

— 00

By supposing that the electric field \ after the distance of
closest approach - it is possible to find a time t, for which the
electric acting on the e- becomes negligible - fort > t, > we
can extend the maximal bound of the integration to +oco
because the contributions of the integration are negligible for
t, <t'<+00



Transferred energy: Classical oscillator (3)

* |n this case the solutionis >

7(t) = — c (ﬁ sinwot — S cos wot)

mwo

with

+o00 +00
C = / ' E () coswot’ et S = / dt'E (¢) sinwot’

* To determine the energy lost by the projectile to the oscillator
—> determination of the electron velocity v, -

76(11/) - _c (ﬁ COS wot + ? sin wot)

™m



Transferred energy: Classical oscillator (4)

* Thus the transferred energy T is -

- (@48

2m

e That can be also written -

+ oo
/ dt/ﬁ(t/)ezwgt

9 2

€
T = ——
2m




Classical oscillator: Dipolar approximation (1)

 We consider the Coulomb field generated by the incident

particle -
E(7,t) = —V&(7, 1)

with &, & and U the potential, trajectory and velocity of the
particle:

M?@:hij%” et R =7+t

e We note that

7T =0 .

@/
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Classical oscillator: Dipolar approximation (2)

e We consider the Fourier transforms at 1 and 3 dimensions >

1 [T -
flw) = o dtf(t)e ™"
S T AN, &

* To obtain the Fourier transform of the potential - we use the

relation >
+ o0
1 1 s v 1 @7
g d°>a —
r (2m)? /_OO ?QQQ




Classical oscillator: Dipolar approximation (3)

e The electric field can be thus written -

BP0 — o / d3?7 T (PP =T

(27)

* For small movements from the equilibrium - dipolar
approximation -

ei?'? ~14+iq. 7™ ~1

e The Fourier transform of the electric field can be written in the
dipolar approximation -

e T q i@ T
ﬁ(w)_—(QW)z /_OO d 7(126 S(w—T.7)




Classical oscillator: Dipolar approximation (4)

The integration is usually made by choosing the x axis along the
projectile velocity and the y axis along the impact parameter -

=22 (i, (22) . (22) o

TU?

with K, and K, the modified Bessel functions of order 0 and 1

Thus T becomes =
2616

T=— 33 5 Jdist(P)
with
fantp) = [0 (S2)] -+ [0 (52)]

For (wop/v) < 1 - f: =~ 1 - we find again the Bohr result



Semi-classical model for the stopping power: v, < v < ¢ (1)

* Semi-classical model developed by Bethe (1930) - the motion
of the nucleus is analyzed by classical mechanics and the
motion of bound electrons by quantum mechanics - the
electrons are no more considered as classical oscillators but
occupy quantum states in the target atom

* We consider a target atom with Z, electrons (with mass m) and
the stationary states |j) of energies €;, with j that represent a
full set of quantum numbers and j = 0 for fundamental state
— the resonant frequencies for an atom in its initial state are

given by
hwj'o = Ej — €0

* The electrons are at rest duringthe > U > g



Semi-classical model for the stopping power: v, < v < ¢ (2)

* For aloss energy Q by the incident ion—> Bethe considered:

S = Z ] Qdor fi0(Q)

* 0, isthe Coulomb cross section for a transferred energy Q (R is
for Rutherford)

* The functions f,,(Q) are called generalized oscillator forces
(GOS) that include all quantum effects for the stopping cross
section and that describe the transition probabilities between
different states for a given transferred energy Q

* Determination of f,,(Q)?



Resolution of Schrodinger’s equation (1)

The electronic motion is controlled by Schrodinger’s equation
depending on time -
L dU (7, t)

(H+V)¥(7,t) = ih—

with H, the Hamiltonian of an isolated atom of the target, ¥, the
wave function depending on time for a bound state of the atom, V,
the potential describing the interaction with the given projectile is
given by Z2

V(P =) ?,,_—e 1]%(75)

where 7 is for (7..... 7 z, ) with 7, the position operator of the 1"
electron and & = T + vt , the trajectory of the projectile -

@/

/




Resolution of Schrodinger’s equation (2)

* The wave function depending on time ¥ can be developed
according to stationary waves -

U(7,t) =) ci(t)e " "j)
where |j) are solutions of: !
Hlj) = €;l7)

* Within the framework of the first order perturbations method
(1** order Born approximation) = the c; coefficients can be
developed as power of the perturbation potential V -

cj(t) = b0 + V() + 2 (t) + ..



Resolution of Schrodinger’s equation (3)

with

P 1 for y=0
1970 0 for j#0

and

t
i (1) = % / dt'e"" (j|V (7, )0}

(2) _ lzwjkt
() = zh Z/ dt' ™kt GV (7, ) k)

t/
x/ dt" ot (k| V (7, ¢)|0)

and so on... (remark - fondamental state at t = - c0)



Resolution of Schrodinger’s equation (4)

* Within the framework of the first order perturbations method
- only coefficients c; !/(c0) are important -> they are the
transition amplitudes - important to calculate them

* By inserting in ¢; (oo the explicit expression of the potential,
by considering the Fourier transform and by integrating on t’

%
oo i g
cgl)(OO) = m% /ch> 5 Fio(7)d(wjo — q.7)
with VA




Transition probabilities

The transition probabilities are given by (Postulate 1V) -
: 2
Pj(p) = [{j¥(0c0))

And thus within the framework of the first order perturbations

method > ,

P;(p) = |\ (c0)

Attention - ¢; (/(c0) # 0 for wj, < qv -> condition son Q >

w?o < ¢°v? = 2mv°Q > (e — €0)”



Approximation of distant collisions —
Dipolar approximation (1)

We consider the ¢; (oo) at large p (distant collisions) - we use
the dipolar approximation -

ei?'? ~14+iq.7

We thus obtain Zs
Fio(7)~iq (j|y 7|0
v=1

Within this approximation and choosing the x axis along the
velocity of the projectile and the y axis along the impact
parameter -

Z2
2e1ewip .
cg-l)(oo) = ——— (3 Z?V 0

o (iKo (Wjop) K (Wjop) ,0)
v v




Approximation of distant collisions —
Dipolar approximation (2)

with K, and K, the modified Bessel functions of 0 and 1 order

* The transitions probabilities thus become -
2eie’ Zo
P. — .
() mu?p?hw;o Ji0

X { {WjOPKO (wjop)r | |:Cdj0pK1 (wjop)r}
(9 (9 (9 (9

* The quantity f, is called the dipolar oscillator force and has as
expression - 5

Zo
2m .
ij — ShQZz (Ej o 60) J Z?V O

with the sum rule of Thomas-Reiche-Kuhn: 2. f;, = 1



Comparison classical € semi-classical

 We consider the mean transferred energy T

moy

moy Z P hwjo

* By comparing this expression W|th the classical result -

2¢e2 e
— m/012 2fdi8t(p)
2 2
Faist(p) = [@Ko (%ﬂ n {wopKl (@)}
v v v v

* Equal expression with

it (s ngo {wgopKO (wfuopﬂ n {w;opKl (w;op)r




Beyond distant collisions

To generalize the previous f;, functions to large values of Q,
Bethe sets out -
1 €; — €0

ij(Q) — 75 Q

called generalized oscillator forces

Fi0(q)|°

At the limit of small Q values >

ij(Q)‘ng = fjo



Stopping power: Bethe equation: v, < v < ¢ (1)

* Necessary distinction between distant and close collisions (via p)
&> collisions with large or small transferred momentum (via q)
<> collisions with or small transferred energy (via Q)

* Splitting of the integral:

S = Z / Qdor fi0(Q)

into 2 parts in relation to Q, - For Q < Q, - dipolar
approximation is valid (Q,) -

Saist = Z fo / Qdor

(ej—e0)?/2mv?



Stopping power: Bethe equation: v, < v < ¢ (2)

* ForQ>Q,—> itis necessary to determine the upper bound of
the integral - for an ion interacting with an e* (m, > m) -

Trae = B
dmim  mqv?
- (m1 +m)? 2

~ 2mu?

* That gives -

2

2mv
Sclose = / QdO’R Z fJO(Q)

Qo j



Stopping power: Bethe equation: v, < v < ¢ (3)

e Bethe demonstrated that =

> fo@ =1

e We have thus =

2

2mu? 2muv
Sclose — / QdO'R = Z fj()/ QdUR
j Qo

Qo

* By combining close and distant collisions -

2

2mu
S = Setose + Saist = Yy fjo / Qdor
- (
J

ej—eo)/va2



Stopping power: Bethe equation : v, < v < ¢ (4)

* By considering the explicit expression of do, -

ere; dQ

mav2 Q2

dop = 27

e We thus obtain

4
S = Wele ZQZfJO In -2

€; — €0



Stopping power: Bethe equation: v, < v < ¢ (5)

* The stopping power equation of Bethe is usually written -

2 2 2
g — 47‘(‘6126 Z1n 2mu
mu 1

with / defined as the mean excitation energy such as -
Inl =Y fijoln(e; —eo)
J

e Let’s recall the application conditions -

mp > m

voO>S> U9 = muv? > hwo



Bethe equation versus Bohr equation

2 92
g — 47’('226216 L.
mu
3
with L. =1n Cmu from Bohr
le1 e|wo
2
with L. =1n 2mu from Bethe

I



Principal dependences of the stopping force

dE 4rrese? 2mu?
_(_ :NSGZ 12 NZQIH ]
dx elec oy
47?6?;32 Principal dependence in the velocity

muv

NZs  Principal dependence in the material

2mu>
I

In Weak dependence in the velocity and in the material



Mean logarithmic excitation energy (1)

The mean logarithmic excitation energy | only depends on the
medium (not on the projectile)

Difficult calculations - obtained from experiment

[ is in the logarithmic part of - not necessary to be known with
precision

I linearly varies (approximately) with Z - atomic model of
Thomas-Fermi (atomic electrons = “gas”)

The irregularities in the variation with Z are due to the shell
structure of the atom

Usually - evaluation of / with an empirical equation



Mean logarithmic excitation energy (2)

1000
' > Experimental values
aolll | =—— Theoretical expression
600 |-
=3
2
— 400 }
200 |
O 1 1 i 1 X 1 N 1 1
0 20 40 60 80 100
Z2
I 12+7/Z 7 <13
Y —1.19
A 9.76 + 58.87 Z > 13

32



| for composite materials

* For composite materials - the stopping power of the material
can be approximated by the sum of the stopping powers of its
elementary constituents - identical relation for the mean
excitation energies

* Bragg’s additivity rule for n materials i:
NZ =) N;Z
NZInl =) N;iZnl,

* Z;is the atomic number of the atoms of type i, N, is the number
of atoms of type i per volume unit and N = 2 N is the total
number of atoms per volume unit

Approximate rule - can lead to important mistakes



Bethe-Bloch equation: v, <v ~c (1)

Many corrections to the Bethe equations - Bethe-Bloch
equations (in the Born approximation)

2 2
_Admrreme

Se=—5 Zz"L(B)

Standard reference expression for the electronic stopping power with
B =v/c, z=e,/e r,=e’/(mc?) (r,: classical radius of the electron)

2 02
L(ﬁ)_LO(ﬁ)_%ln(chﬁ Wm> _52_1111_%_%

ICRU — 1993 34



Bethe-Bloch equation: v, <v ~c (2)

* With W _ the maximum energy transferred during 1 collision to
a free electron (non-approximated relativistic expression) -

- 4 —1

2mc? 32 2m ( m )2

W, = 14 |
1_52 m1(1—52)1/2

* Form, > m - we well find 2m~,?v?




Relativistic correction: v ~ c (1)

When v ~ c or 3 =v/c ~ 1- relativistic corrections have to be
done to previous expression - term ;= (1-(32)2/2

We also have - p,,.,, ~ 7;¥/w, > A of the upper bound of the
impact parameter when v /

A complete relativistic classical calculation (as for quantum)
shows that £ becomes -

Plor= 2 (o () o (27) o)
Y1V Y1 Y1V Y1V
We have thus a relativistic modification of f,..(p) >

2 2
1 |w W w W
Y1 [TV 71v Y1V 71v




Relativistic correction: v ~ c (2)

And thus a modification of the principal dependence in velocity -

47’(’6%62 4#6%62 4%6%62 5
5 2.9 — 2 (1—57)
mu MY{v mu

Moreover the momentum of the incident particle becomes my,v -
_ 2, 2

And thus we have a modification of the logarithmic term -

2mu* 1y 2myiv? 1 2mu?

i T U I(1- %)

The combination of all modifications implies that S 2 whenv A

In




Density correction (1)

Density correction = -9/2

In the Bethe equation = interactions with isolated atoms -
valid for low density gas

In condensed matter (solid) - the interactions can get done
with a large amount of atoms at once - we have to consider
collective effects

Model of Fermi (1940) - matter assimilated to a gas of
oscillators submitted to the electric field of the particle

Incident charged particle - polarization of matter - the
electric field due to the charged particle disturb the atoms -
they get a dipolar electric momentum - production of an
electric field opposed to the field due to the charged particle
— reduction of the electric field due to screening effect of the
dipoles



Density correction (2)

* The polarization implies that distant atoms are submitted to a weaker
electric field = their contribution to the stopping power is then
reduced

 The density effect particularly appears for high energies because of
the factor ~, in p,,, that increases the mistake made by ignoring
polarization of the medium > v A >p_, A >0/221 >SN

 The density correction can be written -

) hwy, 1

— =] Il .
5 = In— n-y 5 ;

with w,, the plasma pulsation for an electronic density n = NZ (e,
dielectric constant) -

ne?
Wy = 4| ——
b AL



Density correction (3)

* Relativistic and density corrections cancel each other out—>
Fermi’s plateau

Logarithmic Rise
Neglecting Density

Effects
=
=,
©
~N
=
o
| :
® | Log Rise Fermi plateau |
= il e with “density |
© effect
m - -
0 e ) ierpre By RO Sl
| 10 100 1000

By= P/uc



Shell correction (1)

Shell correction = -C/Z

Bethe and Bohr equations supposed v > v, (velocity of the
atomic electrons) - the evaluation of / is based on this
assumption - mean / value

When it is not the case (v \) = it is necessary to explicitly
calculate the ions-electrons interactions for each electron shell
and for each electron binding energy

When v N = contribution to S of internal electrons (first K, then
L, ..) N

“Mean” correction that reduces S (maximal correction = 6%) -
= for all charged particles (including electrons) - only
dependent on medium and velocity



Shell correction (2)

2 models to calculate C/Z >

1. The method of the hydrogenous wave functions (HWF: bound
e  described by hydrogenous wave functions )

2. The method of the local density approximation (LDA: bound e
are a gas of e with variable density)



Shell Correction

0.3

o
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Shell correction (3)

o oo LDA (Ziegler)
s_a_o HWF (Bichsel)
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7 T B e, it i e e = = = = -

h A d
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Shell correction (4)

LDA

HWF o=

o
T

D.DE—/ _

=L | A i i 1 1 i
gl o2 oL0s Qo 0.2 Q.5 1.0 2.0 5.0 0.0

Ep/Z; (Mev)
{(Ep= proton kinetic mnergy )




Corrections beyond the first order Born approximation

* The stopping number L, is valid only if the velocity of the projectile
is large by comparison to the velocities of the atomic electrons

* For v, <v - the first order Born approximation (necessary for the
calculations of Bethe) is no more valid

* We have to add correction terms to L, - expansion of L in power
of z >

L(B) = Lo(B) + 2L1(B) + 2° L2(B)




Barkas-Andersen correction

Barkas-Andersen correction - zL,(3)

The Barkas-Andersen correction is proportional to an odd power
in z (charge of the projectile) - S for negative particles is slightly
weaker than for positive particles - S# between particles and
corresponding antiparticles

A positive charge attracts the e - the interactions 1 > S 2

A negative charge repulses the e = the interactions N - S\



Example of Barkas-Andersen effect

Incident proton and antiprotons on silicon

0.6

-dE/dx [MeVem?/mg]
o
~

O
ho

Protons: ICRU
Bethe-Bloch

Antiprotons: CERN-Aarhus
Antiprotons: CERN-Aarhus

0.1

Energy [MeV/u]
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Bloch correction

« Bloch correction > z2L,(3)

* Semi-classical model taking precisely into account distant
collisions (large impact parameter)

* Generally Bichsel evaluation of the Bloch correction is used:

22 Lo(y) = —92[1.202 — y2(1.042 — 0.855y2 + 0.343y%)]

where y=za//3 and a=1/137 (fine structure constant)



Evaluation of various corrections (1)

Incident proton on aluminium

.
=
=

Percentage Contribution
- =

0.1

t

- Aluminum

L

1146111

102

F(B)
In<i>{nagative)

Shell (negative)
Ly— Barkas

Ly~ Bloch (negative)
Dansity (negative)

108

Particle Energy ( MaV/amu )
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Evaluation of various corrections (2)

Protons incident on gold -
107

102E

RELATIVE CORRECTION

103}

104

1A i Ll 1 L i il
10 100 1000
PROTON ENERGY/MeV
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Stopping cross section for ions at very high velocities

Ultra-relativistic equation of Lindhard-Sgrensen (E~ 100 GeV:
far beyond normal applications)

1.64c
Ruw,

L — In

R: radius of the projectile, w =(4m e?N_/m)Y/2: plasma frequency that
quantifies the electronic density

Attention: for E 2 the creation of electron-positron pairs becomes
predominant

51



Electronic cross section for ions at small velocities
v S vo - Perturbation theory not applicable (no sudden collision)

Moreover electrons capture by incident projectiles (for example:
He** > He* - He®) - charge state of the ion is variable (Thomas-

Fermi tlleory):
* —v z2/3'U
Z = Z (1 — € /( 0))

Different theories but not so precise that the Bethe-Bloch theory
for large velocities - use of semi-empirical expressions based on a
theoretical « trend »

=15, oc B°°




Nuclear cross section for ions at small velocities (1)

Chapter 1 - Nuclear collisions for incidents ions are rare -
small contribution to the total stopping power

Only for incident ions with small velocity - even in that case
their contribution is small

However - They can have effects a posteriori - radiative
damages



Nuclear cross section for ions at small velocities (2)

in the center of mass system:
diffusion by angle 6 due to a un central potential V(r)

N
N\
pA
\ -

Mg, Vv !
O—= | ———————————————— [

p r\ﬁ////

(a) Definit f bl

O—»
I(n']
Ap /

,,,,,,,,,,,,,,, e

(b) Distance of closest approach

= S, = / Tdo = / T2mpdp = 2nyE / sin?(0/2)pdp with ~ = ™2

~ (m1 + ma2)?



Nuclear cross section for ions at small velocities (3)

o (&) (%) [ v =T =n

o d
mor —('0 — —TMNopvu

dt

% —1/2
V(r) p°

m

with E, the initial kinetic energy of the relative motion



Nuclear cross section for ions at small velocities (4)

7.2
Interaction potential: V' (r) = “122¢ FS(L)
Ts

r

The screening function F (r/r,) takes into account the screening by the
atomic electrons (r.: screening length in the model of Thomas-Fermi)

—> Adjustment to experimental results = « universal screening
function »

Fs(r/rs) = 0.1818exp(=3.2r/rs) + 0.5099 exp (—0.942r /rs)
10,2802 exp (~0.4029r /1) + 0.2817 exp (~0.2016r /1)

with 7 = 0.88534a (2 + 28-23)‘1 and ag = 0.529A



Stopping power for ion: example

Incident proton on aluminium - S=S5,,.,

+S

nucl =

S

elec

=S

10° E

Pouvoir d'arrét (MeV/cm)

ower

—— Electronic stopping power
Nuclear stopping power
Total stoppin

10° 10’ 10°
Energie (MeV)

coll
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Electronic mass stopping power (1)

Mass stopping power: ratio between the stopping power and
the density p of the material (ordinary unit: MeV cm?gt) >

NS(E)  1dE

p p dx
With p = M,N/N, (M, is the molar mass, N is the atomic density
and N, is the Avogadro number) and M, = AM,, (A is le mass
number and M, =m N, = 103 kg mol is the constant of molar
mass and m, is the atomic mass constant) -

_1 dEelec L 47T7"2m62 NA z Z2
p dx € M, A B2

L(p)




Electronic mass stopping power (2)

The electronic mass stopping power is the product of 4 factors:

The constant factor 47r,2mc?N,/M, = 0.307 MeV cm? g1 -
order of magnitude for the electronic mass stopping power

The factor Z/A that is included between 0.4 et 0.5 for all stable
isotopes (except hydrogen) - weak dependency into the
medium

The factor 32 - monotonic decreasing function in ion velocity
that tends to 1 for large energies - explain the decrease of
the stopping power as a function of the energy

The stopping number L((3) - for L((3) = L,(3) > monotonic
increasing function (slow) in the velocity and in Z (via I: -In |)
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Velocity dependency

Fresia
™

v
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Particle velocity j

Protons incident on Si - shell and density corrections are
neglected in the calculation of L,(3)



Electronic mass stopping power : Examples
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Influence of the phase

* For large energies = influence of the density correction -
large correction for solids and weak correction for gases

* For small energies - influence of chemical and intermolecular
bounding - modification of the value of / (example: liquid
water: / = 75.0 eV and gaseous water: / = 71.6 eV)
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Range of charged particles (1)

Charged particles lose their energy in matter - they travel a
certain distance in matter - this distance is variable because of
aleatory energy losses and deviations (straggling) - different
ranges have to be defined:

— The range R of a charged particle of energy E in a medium is the mean value
( I ) of the length | of its trajectory as it slows down to rest (we do not take
into account thermal motion)

— The projected range R, of a charged particle of energy £ in a medium is the
mean value of its penetration depth ( d ) along the initial direction of the
particle

R, <R due to the sinuous character of trajectories - definition of
the detour factor = Ry/Rqp, <1



Range of charged particles (2)

In CSDA approximation -
FE dE/
o NS(E')
By replacing S by the Bethe expression (non-relativistic - dE =
Mvdv) -
) Y v3du

R X /
CSDA . L(’U)

By neglecting the dependency into the velocity for the stopping
number -

Rospa =

Respa o< vt o< E?



Range of charged particles (3)

* In reality - the equation of Bethe (or Bethe-Bloch) is not valid
for small velocities = but before to stop small velocities have

to be considered

* We consider the empiric equation -

E1.77 1
R — =
PICSDA = —9e= T 670




Range of charged particles: Example

Incident proton on aluminium (p =2.70 g/cm?3)

1000 —— CSDA range
Projected range

100
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0.1

0.01

Range (g/cm®)

1E-3

1E-4

1E-5

1E-6
1E-3 0.01 0.1 1 10 100 1000 10000

Kinetic energy (MeV)

http://www.nist.gov/pml/data/star/index.cfm
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Detour factor

Incident proton on aluminium
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Range approximations

2
47TT me

Se = 52 Z 2> L(p)

e NS(E) o 1/E

* NS(E)/z? only depends on v = if we have particle of mass M.
and charge z:

* For 2 particles (M,,z,) and (M,,z,) of same velocity:

Rbopa  Mi23 Same range for proton
RZop,  Ma2? ‘ and a of same velocity
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Examples of CSDA ranges (1)

5.5 MeV « in air: Reggp=4.2 cm

4.0 MeV «in air: Regpp= 2.6 cm

5.5 MeV a in aluminium: Rp,= 2.5 103 cm

1 MeV proton in air: Regpp= 2.4 cm

4 MeV proton in air: Rgpp=23.6 cm

5.5 MeV proton in aluminium: R.pa= 2.3 102 cm

http://www.nist.gov/pml/data/star/index.cfm



Examples of CSDA ranges (2)

—
=]
o

Air
veesennes Water, liquid Il
||||| - hl

------- Cu

e 7
i Ph

=
=]

=
=]

CSDA range (g/cm 2)
=

=%
=]

b
LY
10
"-‘. 5
N

=%
[=]

-

-]

E ‘1
1
.
v

=
=]

=%
=]

=%
=]

.":'-3 2 3 458 102 2 34551']-1 2 3456?10121 2 3456?'.“:'1 2 3456?1u2 2 3456?1u3

Alpha kinetic energy (MeV)

o incident on various media



Bragg curve

We consider a semi-infinite medium and a beam of identical
parallel charged particles with same E - they stop after
travelling the distance Ry,

The Bragg curve gives the dose (mean deposited energy per
mass unit of the target) as a function of the depth

At depth x, the particle has to cover a distance d = R, - X
The dose D ox S o< 1/v? = Ryp, X VA

‘ Doci— !
vd VRcspa—z
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Example of Bragg curve

e Protons of 700 MeV in water =

7.0

£ . : : :

) ; : : : :
> i ; : : :
L E

T 10F

x [mm]

* Applications: protontherapy or hadrontherapy



Transmission probability

Transmission of ions

Absorber thickness



Strong nuclear interactions

If ion comes very close to target nucleus - strong nuclear
interaction becomes possible - the target nucleus will be
broken up

One particular case: the collision of a high-energy proton with
a very heavy nucleus with thus more neutrons than protons
(lead: 82 protons and =125 neutrons) - the fragments will
quickly expel their excess neutrons - production of a large
number of secondary neutrons (proton of 1 GeV = on
average 25 neutrons in lead)

This process of neutrons production is called spallation -
efficient way to produce neutrons

All fragments interact with matter



