
Chapter II: 
Interactions of ions with matter 
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Trajectories of α particles of 5.5 MeV 
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Source: SRIM 
www.srim.org 



v=v0 → Ep=0.025 MeV 

relativistic effect 
→ Ep=938 MeV 

Incident proton on Al: Bohr model 
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• Quantum model of the electronic stopping force 

 - Intermediate velocities 

 - Large velocities 

 - Small velocities 

 

• Nuclear stopping force (small velocities) 

• Range  and Bragg curve 
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Transferred energy: Classical oscillator (1) 

• Before to look for quantum processing → details about classical 
processing: electron = classical harmonic oscillator with 
pulsation !0 → e- bound to its site by a spring force with 
modulus -m!0

2r → motion equation → 

 

 

 with                the electric field generated by the projectile 
(perturbation) 

• No-linear equation → simplification → 
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Transferred energy: Classical oscillator (2) 

• By supposing the absence of electric field at t = -1 and            
r(-1) = 0 → a particular solution of the equation is → 

 

 

 

• By supposing that the electric field ↘ after the distance of 
closest approach → it is possible to find a time t1 for which the 
electric acting on the e- becomes negligible → for t > t1 → we 
can extend the maximal bound of the integration to +1 
because the contributions of the integration are negligible for 
t1  < t’ < +1 
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Transferred energy: Classical oscillator (3) 

• In this case the solution is → 

 

 

     with 

 

 

 

• To determine the energy lost by the projectile to the oscillator 
→ determination of the electron velocity ve →  
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Transferred energy: Classical oscillator (4) 

• Thus the transferred energy T is → 

 

 

 

• That can be also written → 
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Classical oscillator: Dipolar approximation (1) 

• We consider the Coulomb field generated by the incident 
particle → 

 

 with ©,     and       the potential, trajectory and velocity of the 
particle: 

 

 

 

• We note that  
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Classical oscillator: Dipolar approximation (2) 

• We consider the Fourier transforms at 1 and 3 dimensions → 

 

 

 

 

 

 

• To obtain the Fourier transform of the potential → we use the 
relation → 
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Classical oscillator: Dipolar approximation (3) 

• The electric field can be thus written → 

 

 

 

• For small movements from the equilibrium → dipolar 
approximation  → 

 

 

• The Fourier transform of the electric field can be written in the 
dipolar approximation → 
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Classical oscillator: Dipolar approximation (4) 

• The integration is usually made by choosing the x axis along the 
projectile velocity and the y axis along the impact parameter → 

 

  

  with K0 and K1, the modified Bessel functions of order 0 and 1 

• Thus T becomes → 

 

  

     with 

 

 

• For (!0p/v) ¿ 1 → fdist ' 1 → we find again the Bohr result 
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Semi-classical model for the stopping power: v0 ¿ v ¿ c (1) 

• Semi-classical model developed by Bethe (1930) → the motion 
of the nucleus is analyzed by classical mechanics and the 
motion of bound electrons by quantum mechanics → the 
electrons are no more considered as classical oscillators but 
occupy quantum states in the target atom 

• We consider a target atom with Z2 electrons (with mass m) and 
the stationary states |ji of energies ²j, with j that represent a 
full set of quantum numbers and  j = 0 for fundamental state  
→ the resonant frequencies for an atom in its initial state are 
given by  

 

• The electrons are at rest during the  → 
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Semi-classical model for the stopping power: v0 ¿ v ¿ c (2) 

• For a loss energy Q by the incident ion→ Bethe considered: 

 

 

 

•  ¾R is the Coulomb cross section for a transferred energy Q (R is 
for Rutherford) 

• The functions fj0(Q) are called generalized oscillator forces 
(GOS) that include all quantum effects for the stopping cross 
section and that describe the transition probabilities between 
different states for a given transferred energy Q  

• Determination of fj0(Q)? 
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• The electronic motion is controlled by Schrödinger’s equation 
depending on time → 

 

 

 with H, the Hamiltonian of an isolated atom of the target, ª, the 
wave function depending on time for a bound state of the atom, V, 
the potential describing the interaction with the given projectile is 
given by 

 

 

  where      is for (     ,…,         ) with        the position operator of the ºth 
electron and                           , the trajectory of the projectile 

 

Resolution of Schrödinger’s equation (1) 
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Resolution of Schrödinger’s equation (2) 

• The wave function depending on time ª can be developed 
according to stationary waves → 

 
 

 where |ji are solutions of: 

 

 

• Within the framework of the first order perturbations method 
(1st order Born approximation) → the cj coefficients can be 
developed as power of the perturbation potential V →  

16 



 with 

 

 and 

 

 

 

 

 

 

 

 and so on… (remark → fondamental state at t = - 1) 

 

Resolution of Schrödinger’s equation (3) 
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Resolution of Schrödinger’s equation (4) 

• Within the framework of the first order perturbations method 
→ only coefficients cj 

(1)(1) are important → they are the 
transition amplitudes → important to calculate them 

• By inserting in cj 
(1)(1) the explicit expression of the potential, 

by considering the Fourier transform and by integrating on  t’ 
→ 

 

 

 

 with  
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Transition probabilities 

• The transition probabilities are given by (Postulate IV) → 

 

 

 

• And thus within the framework of the first order perturbations 
method →  

 

 

• Attention → cj 
(1)(1) ≠ 0 for !j0 < qv → condition son Q →  
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Approximation of distant collisions –
Dipolar approximation (1) 

• We consider the cj 
(1)(1) at large p (distant collisions) → we use  

the dipolar approximation → 

 

• We thus obtain 

 

 

• Within this approximation and choosing the x axis along the 
velocity of the projectile and the y axis along the impact 
parameter → 
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Approximation of distant collisions – 
Dipolar approximation (2) 

 with K0 and K1, the modified Bessel functions of 0 and 1 order 

• The transitions  probabilities thus become → 

 

 

 

 

• The quantity fj0 is called the dipolar oscillator force and has as 
expression → 

 

 

 

 with the sum rule of Thomas-Reiche-Kuhn: j fj0 = 1  
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Comparison classical ↔ semi-classical 

• We consider the mean transferred energy Tmoy as 

 

 

• By comparing this expression with the classical result → 

 

 

 

 

• Equal expression with  
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Beyond distant collisions 

• To generalize the previous fj0 functions to large values of Q, 
Bethe sets out → 

 

 

 called generalized oscillator forces 

 

• At the limit of small Q values → 
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Stopping power: Bethe equation: v0 ¿ v ¿ c (1) 

• Necessary distinction between distant and close collisions (via p) 
↔ collisions with large or small transferred momentum (via q) 
↔ collisions with or small transferred energy (via Q) 

• Splitting of the integral: 

 

  

 

 into 2 parts in relation to Q0 → For Q < Q0  → dipolar 
approximation is valid (Q0 ) → 
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Stopping power: Bethe equation: v0 ¿ v ¿ c (2) 

• For Q > Q0 → it is necessary to determine the upper bound of 
the integral → for an ion interacting with an e- (m1 À m) → 

 

 

 

 

 

 

• That gives → 
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Stopping power: Bethe equation: v0 ¿ v ¿ c (3) 

• Bethe demonstrated that → 

 

 

• We have thus → 

 

 

 

• By combining close and distant collisions → 
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Stopping power: Bethe equation : v0 ¿ v ¿ c (4) 

• By considering the explicit expression of d¾R → 

 

 

 

• We thus obtain  
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Stopping power: Bethe equation: v0 ¿ v ¿ c (5) 

• The stopping power equation of Bethe is usually written → 

 

 

 

 

 with I defined as the mean excitation energy such as → 

 

 

• Let’s recall the application conditions → 
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Bethe equation versus Bohr equation 
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Principal dependences of the stopping force 

30 



Mean logarithmic excitation energy (1) 

• The mean logarithmic excitation energy I only depends on the 
medium (not on the projectile) 

• Difficult calculations → obtained from experiment 

• I is in the logarithmic part of → not necessary to be known with 
precision 

• I linearly varies (approximately) with Z → atomic model of 
Thomas-Fermi (atomic electrons = “gas”) 

• The irregularities in the variation with Z are due to the shell 
structure of the atom 

• Usually → evaluation of I with an empirical equation 

31 



Mean logarithmic excitation energy (2) 
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Experimental values 
Theoretical expression 



I for composite materials 

• For composite materials → the stopping power of the material 
can be approximated by the sum of the stopping powers of its 
elementary  constituents → identical relation for the mean 
excitation energies  

• Bragg’s additivity rule for n materials i:  

 

 

 

 

 

• Zi is the atomic number of the atoms of type i, Ni is the number 
of atoms of type i per volume unit and N = i Ni is the total 
number of atoms per volume unit 

 
33 Approximate rule → can lead to important mistakes 



Bethe-Bloch equation: v0 < v ' c (1) 

     Many corrections to the Bethe equations → Bethe-Bloch 
equations (in the Born approximation)  
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Standard reference expression for the electronic stopping power  with 
¯ = v/c, z = e1/e, re = e2/(mc2) (re: classical radius of the electron) 

ICRU – 1993 



Bethe-Bloch equation: v0 < v ' c (2) 

• With Wm the maximum energy transferred during 1 collision to 
a free electron (non-approximated relativistic expression) → 

 

 

 

 

• For m1 À m → we well find 2m°1
2v2  
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• When v ' c or ¯ = v/c ' 1→ relativistic corrections have to be 
done to previous expression → term °1 = (1-¯2)-1/2  

• We also have → pmax » °1v/!0 → ↗ of the upper bound of the 
impact parameter when v ↗  

• A complete relativistic classical calculation (as for quantum) 
shows that E becomes → 

 

 

 

• We have thus a relativistic modification of fdist(p) → 

 

 

Relativistic correction: v ' c (1)  
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Relativistic correction: v ' c (2)  

• And thus a modification of the principal dependence in velocity → 

 

 

 

• Moreover the momentum of the incident particle becomes m°1v → 

 

 

• And thus we have a modification of the logarithmic term → 

 

 

 

• The combination of all modifications implies that S ↗ when v ↗ 
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Density correction (1) 

• Density correction → -±/2 

• In the Bethe equation → interactions with isolated atoms → 
valid for low density gas 

• In condensed matter (solid) → the interactions can get done 
with a large amount of atoms at once → we have to consider 
collective effects 

• Model of Fermi (1940) → matter assimilated to a gas of 
oscillators submitted to the electric field of the particle 

• Incident charged particle → polarization of matter → the 
electric field due to the charged particle disturb the atoms → 
they get a dipolar electric momentum → production  of an 
electric field  opposed to the field due to the charged particle  
→ reduction of the electric field due to screening effect of the 
dipoles 
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Density correction (2) 

• The polarization implies that distant atoms are submitted to a weaker 
electric field → their contribution to the stopping power is then 
reduced 

• The density effect particularly appears  for high energies because of 
the factor °1 in pmax that increases the mistake made by ignoring  
polarization of the medium → v ↗ → pmax ↗ → ±/2 ↗  → S ↘ 

• The density correction can be written → 

 

 

 with !p, the plasma pulsation for an electronic density n = NZ  (²0: 
dielectric constant) → 
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Density correction (3) 

• Relativistic and density corrections cancel each other out→ 
Fermi’s plateau  
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Shell correction (1) 

• Shell correction → -C/Z 

• Bethe and Bohr equations supposed v À v0 (velocity of the 
atomic electrons) → the evaluation of I is based on this 
assumption → mean I value 

• When it is not the case (v ↘) → it is necessary to explicitly 
calculate the ions-electrons interactions for each electron shell 
and for each electron binding energy 

• When v ↘ → contribution to S of internal electrons (first K, then    
L, …) ↘ 

• “Mean” correction that reduces S (maximal correction = 6%) → 
= for all charged particles (including electrons) → only 
dependent on medium and velocity 
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Shell correction (2) 

• 2 models to calculate C/Z →  

 

1. The method of the hydrogenous wave functions (HWF: bound 
e- described by hydrogenous wave functions )  

2. The method of the local density approximation (LDA: bound e- 
are a gas of e- with variable density) 
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Shell correction (3) 
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Shell correction (4) 
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LDA 

HWF 



Corrections beyond the first order Born approximation 

• The stopping number L0 is valid only if the velocity of the projectile 
is large by comparison to the velocities of the atomic electrons 

 

• For v0     v → the first order Born approximation (necessary for the 
calculations of Bethe) is no more valid  

 

• We have to add correction terms to L0 → expansion of L in power 
of z →  
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Barkas-Andersen correction  

• Barkas-Andersen correction → zL1(¯) 

 

• The Barkas-Andersen correction is proportional to an odd power 
in z (charge of the projectile) → S for negative particles is slightly 
weaker than for positive particles → S≠ between particles and 
corresponding antiparticles 

 

• A positive charge attracts the e- → the interactions ↗ → S ↗ 

 

• A negative charge repulses the e- → the interactions ↘ → S ↘ 
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Example of Barkas-Andersen effect 

Incident proton and antiprotons on silicon 
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Bloch correction 

• Bloch correction → z2L2(¯) 

• Semi-classical model taking precisely into account distant 
collisions (large impact parameter) 

• Generally Bichsel evaluation of the Bloch correction is used:  

  

 

 

 where y=z®/¯ and ®=1/137 (fine structure constant) 
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Evaluation of various corrections (1) 
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Incident proton on aluminium  



Evaluation of various corrections (2) 

Protons incident on gold → 
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Stopping cross section for ions at very high velocities 

     Ultra-relativistic equation of Lindhard-Sørensen  (E» 100 GeV:  
far beyond normal applications) 
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R: radius of the projectile, !p=(4¼ e2Ne/m)1/2: plasma frequency that 
quantifies the electronic density 
 
    Attention: for E ↗ the creation of electron-positron pairs becomes 
    predominant 



                → Perturbation theory not applicable (no sudden collision)  
 
Moreover  electrons capture by incident projectiles (for example: 
He++ → He+ → He0) → charge state of the ion is variable (Thomas-
Fermi theory): 
 
 
 
Different theories but not so precise that the Bethe-Bloch theory 
for large velocities → use of semi-empirical expressions based on a 
theoretical « trend » 
 

Electronic cross section for ions at small velocities 
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Nuclear cross section for ions at small velocities (1) 

• Chapter 1 → Nuclear collisions for incidents ions are rare → 
small contribution to the total stopping power 

 

• Only for incident ions with small velocity → even in that case 
their contribution is small 

 

• However → They can have effects a posteriori → radiative 
damages 
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Nuclear cross section for ions at small velocities (2) 
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in the center of mass system:  

diffusion by angle µ due to a un central potential V(r) 

 


 



Nuclear cross section for ions at small velocities (3) 
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with Er the initial kinetic energy of the relative motion 



Nuclear cross section for ions at small velocities (4) 
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Interaction potential: 

The screening function Fs(r/rs) takes into account the screening by the 
atomic electrons (rs: screening length in the model of Thomas-Fermi) 
→ Adjustment to experimental results → « universal screening 
function » 



Stopping power for ion: example 

Incident proton on aluminium → S = Selec+ Snucl ≈ Selec = Scoll 

 

57 



Electronic mass stopping power (1) 

• Mass stopping power: ratio between the stopping power and 
the density ½ of the material (ordinary unit: MeV cm2 g-1) → 

 

 

• With ½ = MAN/NA (MA is the molar mass, N is the atomic density 
and NA is the Avogadro number) and MA  = AMu (A is le mass 
number and Mu = muNA = 10-3 kg mol-1 is the constant of molar 
mass and mu is the atomic mass constant) → 
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Electronic mass stopping power (2) 

 The electronic mass stopping power is the product of 4 factors: 
 

1. The constant factor 4¼re
2mc2NA/Mu = 0.307 MeV cm2 g-1 → 

order of magnitude for the electronic mass stopping power  

2. The factor Z/A that is included between 0.4 et 0.5 for all stable 
isotopes (except hydrogen) → weak dependency into the 
medium 

3. The factor ¯-2 → monotonic decreasing function in ion velocity 
that tends to 1 for large energies → explain the decrease of 
the stopping power as a function of the energy 

4. The stopping number L(¯) → for L(¯) = L0(¯) → monotonic 
increasing function (slow) in the velocity and in Z (via I: -ln I) 
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Variation of Z/A as a function of A 
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Velocity dependency 

 Protons incident on Si → shell and density corrections are 
neglected in the calculation of L0(¯)  
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Electronic mass stopping power : Examples 

Protons incident on different media 
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Influence of the phase 

• For large energies → influence of the density correction → 
large correction for solids and weak correction for gases 

• For small energies → influence of chemical and intermolecular 
bounding → modification of the value of I (example: liquid 
water: I = 75.0 eV and gaseous water: I = 71.6 eV) 
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Range of charged particles (1) 

• Charged particles lose their energy in matter → they travel a 
certain distance in matter → this distance is variable because of 
aleatory energy losses and deviations (straggling) → different 
ranges have to be defined: 
– The range R of a charged particle of energy E in a medium is the mean value 

h l  i of the length l of its trajectory as it slows down to rest (we do not take 
into account thermal motion) 

– The projected range Rp of a charged particle of energy E in a medium is the 
mean value of its penetration depth h d  i along the initial direction of the  
particle 

• Rp  < R due to the sinuous character of trajectories → definition of 
the detour factor = RP/RCSDA  < 1 
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Range of charged particles (2) 

• In CSDA approximation → 

 

 

• By replacing S by the Bethe expression (non-relativistic → dE = 
Mvdv) →  

 

 

• By neglecting the dependency into the velocity for the stopping 
number → 
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Range of charged particles (3) 

• In reality → the equation of Bethe (or Bethe-Bloch) is not valid 
for small velocities → but before to stop small velocities have 
to be considered 

 

• We consider the empiric equation → 
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Range of charged particles: Example 
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Incident proton on aluminium (½ =2.70 g/cm3) 

http://www.nist.gov/pml/data/star/index.cfm 



Detour factor 
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Incident proton on aluminium  



Range approximations 

• NS(E) / 1/E 

• NS(E)/z2 only depends on v → if we have particle of mass Mi 
and charge zi: 

 

 

• For 2 particles (M1,z1) and (M2,z2) of same velocity: 
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Same range for proton 
and ® of same velocity 



Examples of CSDA ranges (1) 

• 5.5 MeV ® in air: RCSDA= 4.2 cm 

• 4.0 MeV ® in air: RCSDA= 2.6 cm 

• 5.5 MeV ® in aluminium: RCSDA= 2.5 10-3 cm 

• 1 MeV proton in air: RCSDA= 2.4 cm 

• 4 MeV proton in air: RCSDA= 23.6 cm 

• 5.5 MeV proton in aluminium: RCSDA= 2.3 10-2 cm 
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http://www.nist.gov/pml/data/star/index.cfm 



Examples of CSDA ranges (2) 

® incident on various media 
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Bragg curve 

• We consider a semi-infinite medium and a beam of identical 
parallel charged particles with same E → they stop after 
travelling the distance RCSDA 

• The Bragg curve gives the dose (mean deposited energy per 
mass unit of the target) as a function of the depth 

• At depth x, the particle has to cover a distance d = RCSDA - x 

• The dose D / S / 1/v2 → RCSDA / v4 
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Example of Bragg curve 

• Protons of 700 MeV in water → 

 

 

 

 

 

 

• Applications: protontherapy or hadrontherapy 
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Transmission of ions 
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Strong nuclear interactions 

• If ion comes very close to target nucleus → strong nuclear 
interaction becomes possible → the target nucleus will be 
broken up 

• One particular case: the collision of a high-energy proton with 
a very heavy nucleus with thus more neutrons than protons 
(lead: 82 protons and ≈125 neutrons) →  the fragments will 
quickly expel their excess neutrons → production of a large 
number of secondary neutrons (proton of 1 GeV → on 
average 25 neutrons in lead) 

• This process of neutrons production is called spallation → 
efficient way to produce neutrons 

• All fragments interact with matter 
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